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After a brief introduction discussing the basis of molecular-field theories, we introduce a general-
ization of Anderson’s treatment of antiferromagnetism which enables us to take higher-order
exchange interactions into account as well as anisotropy terms. We restrict ourselves to terms
quadratic in the spins. This theory is developed in detail for face-centred cubic, body-centred
cubic, simple cubic, and body-centred tetragonal magnetic lattices as well as for rutile structure
antiferromagnetics. The general theory is developed in such a way that we can predict the possible
preferred directions along which the spins in the antiferromagnetics will be alined. Until more
information is available about the values of the various exchange parameters, it is not possible to
predict theoretically which of the possible spin arrangements will, in fact, be the most stable one.
On comparing experimental evidence on the spin arrangements in face-centred cubic and rutile
structure antiferromagnetics we find, however, that almost all arrangements found experimentally
are included in those predicted by the theory.

1. INTRODUCTION

It is well known that the Weiss molecular-field treatment is a very suitable theory for
ferromagnetism (for instance, Seitz 1940, p. 608). In this theory one assumes, on the one
hand, that the local effective field H*" is given by the relation

Heﬂ. — Hext. + (ZM:, (1 . 1)

where H,,, is the externally applied field, M the magnetization, and « a constant which we
shall see presently to be related to the strength of the exchange interactions in the crystal.
On the other hand, one assumes that the magnetization is determined by the local field

in the well-known way M = EB(vH*™) (1-2)

where Bis a Brillouin function (Seitz 1940, p. 581),and §{ and v are two constants. Substituting
(1-1) into (1-2) then gives us an equation for A which in the absence of an external field
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522 D. Ter HAAR AND M. E. LINES

has only the solution M = 0 at high temperatures, but at low temperatures, that is at tem-
peratures 7" below the so-called Curie temperature 7, there is also a solution A =+ 0, even
when H,, = 0, and that solution is the stable one. If one solves (1-2) for A at temperatures
T above 7, and uses the high-temperature expansion for the Brillouin function one finds
for the susceptibility y the Curie-Weiss law

- C_
K= (T-T,)

The ad term in (1-1) can be derived from an averaging process applied to the exchange
interaction term. Let V; be the exchange-interaction energy due to the two spins 7 and ;.
For the moment, let us assume that this interaction is isotropic so that we can write

V, = —2J(S,.S)), (1-4)

where S; and S; are the spins of the ith and the jth atom, and where J is an exchange
integral. In the ferromagnetic case, the average value {S;) of S;, say, will be independent
of j and will be proportional to M. If we replace (1-4) by the averaged expression

V, =—2J(S,4S,)), (1-5)

we see that, as far as the ¢th atom is concerned, the contribution to its energy due to the
th atom is given by the expression
J 8 Y P —gpp(S; . H'),

(T>T,). (1:3)

(1+6)
RACH IR

T Ngp 7
where z, is the Bohr magneton, g the Landé g-factor, and N the total number of atoms
in the lattice and where the factor § arises from the fact that only one-half of V; should be
assigned to the 7th atom. We see then that, indeed, the averaging which replaced (1-4) by
(1-5) leads to the molecular-field theory, as each of the V; will give rise to a term in He®
proportional to M.

The situation becomes more complicated, if we are dealing with an antiferromagnetic
substance, that is, a substance which has a vanishing magnetization below the Curie point,
even though the spins are ordered. In the simple case where the lattice can be subdivided
into two equivalent sublattices, the spins on the one sublattice will be all parallel in the
completely ordered state and the spins on the other sublattice will also be all parallel, but
they will be antiparallel to the spins on the first sublattice. In this case, the exchange
constant will be negative, —J, thus favouring the antiparallel alinement, and one has to
be more careful in performing the averaging (1-5). The simple case of two equivalent sub-
lattices was discussed by Van Vleck (1941). One again uses (1-2) which in the region around
and above the Curie temperature can be written in the form

(S;) = $AS(S+1) gus Hi™, (1-8)

where §'is the spin-quantum number of an individual atom, and where H¢* is the effective
field acting upon the ¢th atom. As there is a tendency for antiparallel alinement, Hs® will
be different for different sublattices. Finally, in (1-8)

B =1/kT, (1-9)

with H

where £ is Boltzmann’s constant.
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If we assume that we may neglect for the moment all interactions bar those between
neighbouring spins, the effective field Hs* will be given by the equation

Hi™ = Ho —AM; (i=1,2,j=1,2,i +j), (1-10)

and A will be proportional to the (positive) exchange constant J (compare (1-1) and (1-7);
the change in sign corresponds to the fact that the exchange constant is now —J rather than
J), where M, is the magnetization of the ¢th sublattice which will be proportional to (S;).
From (1-8) and (1-10) we get thus

Mz’ :ﬂT(Hext._/le% (1'11)

where 7 is a constant, 7 = (35(S+1) gup) (3 Ngup). For the total magnetization M we find
2
M =3 M, = fr[2H, —M], (1-12)
i=1
M| 2
[Hew | A(7T+0)

The Curie temperature is obtained by putting H,,, = 0 in (1-11) and finding the
condition that the homogeneous linear equations in M, and M, have a solution. One finds
easily that this occurs if T—T,— 0.

and for the susceptibility y = (kO = A7). (1-13)

(1-14)

It has been pointed out by Anderson (1950) that 7;,is always proportional to the maximum
exchange energy one can obtain by assuming constant magnetization on each of the sub-
lattices, a theorem which we shall use many times in later sections.

Van Vleck’s theory was generalized by Anderson (1950) in two directions. First of all,
Anderson pointed out that for many known antiferromagnetics, Van Vleck’s theory was
inapplicable, since their lattice structure would not allow a splitting up into two equi-
valent sublattices. The most common case is that of a face-centred cubic (f.c.c.) lattice
where one needs at least four sublattices. The theory proceeds along the same lines as
before, that is, one writes down (1-10) but instead of one term AM; one now has a sum A%
where the summation is over all sublattices but the one on which the sth spin is situated.
One finds again a susceptibility of the form (1:13) and by putting H,,, = 0 and solving
a secular equation, one finds 7¢, but now we have no longer (1-14). Infact, Anderson found
®/7,, = 3 which agreed satisfactorily with the experimental ratios for FeO, MnS, and
MnSe. Anderson found, however, that he could not account on this theory for the value
0O/T, = 5 which was found for MnO, and he investigated the influence of next-nearest-
neighbour interactions and found that—at a pinch—he could obtain the value 5 for ©/7,
by including next-nearest-neighbour interactions. In this case he used eight sublattices.

In the present paper we shall further generalize the molecular-field theory of anti-
ferromagnetics. First of all, we shall consider third- and fourth-nearest-neighbour inter-
actions, and secondly, we shall replace the isotropic interaction (1-4) by an anisotropic
expression. There were two reasons for including anisotropy terms: first, we know from
experiments by Griffiths, Owen, Park & Partridge (1959) that in the antiferromagnetic
K,IrClg and (NH,),IrCly salts the nearest-neighbour exchange interactions show a con-
siderable anisotropy. Secondly, we expect that the inclusion of anisotropy terms may

enable us to make more definite predictions about the directions along which the spins
64-2
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524 D. tTer HAAR AND M. E. LINES

in the ordered state will be alined than was possible in the isotropic models considered by
Anderson (1950) and Smart (1952).
We shall write the exchange energy for nearest neighbours in the form
V; = 2J,8,8;,+2J,8,8;, +2J,8,,5;., (1-15)

ixNjx iy iy

where J,, J,, and J, are exchange integrals, and where , y, and z are mutually perpendicular
directions. We shall follow Baker & Bleaney (1955) and Judd (1958) and assume that an
expression such as (1-15) is general enough to give a good approximation to the actual
anisotropy existing in the antiferromagnetic structures with which we shall be concerned.

The anisotropy in an antiferromagnetic arises, in general, from three different effects:
the dipole-dipole interaction between magnetic moments, the anisotropic exchange (or
pseudo-dipolar) interaction, and the anisotropy energy due to the crystalline electric field.
Expression (1-15) is general enough to include all dipole-dipole and pseudo-dipolar terms
in the Hamiltonian—at least as long as g is isotropic (see Nagamija, Yosida & Kubo 1955)—
but we must consider the effect of the crystalline field in somewhat more detail.

For a cubic crystal structure the largest term appearing in the expression for the crystal-
line-field anisotropy involves the fourth powers of the spin components. This term is likely
to be small compared with the one arising from the dipole-dipole or the pseudo-dipolar
anisotropy, and we shall neglect it in the present paper. For the body-centred tetragonal
lattice, however, the crystalline-field term arises from a lower-order perturbation than for
the case of cubic symmetry (Pryce 1950), and this term is thus relatively more important
in this case. As it can be written in terms of the squares of the spin components it can,
however, be assumed to be already included in the general term (1-15) for the case where
i=].

We shall follow Anderson and assume that the molecular-field theory is at least adequate
in a semi-quantitative way, without delving too deeply in the extremely vexed question
of the antiferromagnetic ground state.

In the next section we shall consider the case of an f.c.c. magnetic lattice. In our theo-
retical discussion in that section we shall assume that we may neglect the possible presence
of anions. We introduce thirty-two sublattices, anisotropic interactions between nearest
and next-nearest neighbours, and isotropic interactions between third- and fourth-nearest
neighbours. This allows us to consider patterns of order with a periodicity in any one direc-
tion of not more than two unit cell lengths, including types of order which Anderson with
his eight sublattices could not consider and which appear to occur in MnS,, /MnS, and
CrN. We shall use a formalism in which the orientation of the x, y, z axes is left unspecified;
this enables us more easily to find the ordering patterns. For the f.c.c. case—as for all the
other cubic cases—we find that the Weiss constant ® is independent of the anisotropy,
but can be as large as 157;, when not unreasonable values for the second-, third-, and
fourth-nearest-neighbour interactions are used.

In §3 we compare the results of §2 with experimental data, including those referring to
f.c.c magnetic lattices with anions present which destroy the f.c.c. symmetry.

In 884 and 5 we repeat the considerations of § 2, but for the body-centred cubic (b.c.c.)
and simple cubic (s.c.) magnetic lattices. We introduce respectively sixteen and eight sub-
lattices, and assume anisotropic first-, second-, and third-nearest-neighbour interactions.
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In §§6 and 7 we consider the body-centred tetragonal (b.c.t.) magnetic lattices, again
with first-, second-, and third-nearest-neighbour anisotropic interactions and with sixteen
sublattices. In §6 we consider a pure b.c.t. lattice and in § 7 a rutile structure, where the
magnetic lattice has a b.c.t. structure. In §8, finally, we compare the theoretical results
of § 7 with experimental data.

2. THE FACE-CENTRED CUBIC MAGNETIC LATTICE

In this section we shall consider an f.c.c. magnetic lattice and, for the moment, we shall
assume for the sake of simplicity that there no anions. We shall introduce first-, second-,
third-, and fourth-nearest-neighbour interactions and we assume that the first two are

Z

1d 3d 1d
Zd '/ 1a° 4d./ 3&“ Zd./
2a= 3dg/| [da= 147
1c 1be 3c 3b.T 1c
2¢ V| 2be  |4c|V| 4be || ¢
Vg @b 0 @3 (V) |

6d/] Ba= BI/ Ta= 71
Sd./‘ 6a=_7dJ/| [Ba= 5d1/(6d -r

5C Sb. 7C 7b. 5c
oc/ ¢ 6Pe S| 8be 6c| ¢
] e5h ) e7b ]

2di ° 1ae= /°  3a= 2d
1d./° Za= 3d4ﬁ. la= 1d o

/

X

Ficure 1. The thirty-two sublattices of the f.c.c. magnetic lattice.

anisotropic and the last two isotropic. We neglect all remoter interactions. We shall use
a model with thirty-two sublattices and are thus able to include in our treatment any
possible type of order which has a periodicity of not more than two-unit cell lengths in
any direction.

In figure 1 we show an array of eight unit cells—each cube edge having the length of
two unit cell lengths. In this figure we have labelled each lattice site according to the
sublattice to which it belongs. The thirty-two sublattices are denoted by 1a, 2a, ..., 8a,
1b,2b,...,8b, 1c,...,8c; 1d,...,8d. We note that neither the first-, nor the second-, or
third-, or fourth-nearest-neighbours of an atom belong to the same sublattice as the atom
itself; this is, of course, essential for the model. If we take an atom on an 8d site as the
central atom, its 12 nearest (or first) neighbours are on 5a, 6a, 7a, 8a, 3¢, 4c, 7c, 8c,
2b, 4b, 6b and 8b sites; its 6 next-nearest (or second) neighbours are on 4d, 6d, and 7d
sites (2 on each sublattice) ; its 24 third-nearest (or third) neighbours are on 1a, 2a, 3a, 4a,
1b, 3b, 5b, 7b, 1c, 2¢, 5¢, and 6c¢ sites (2 on each sublattice); and its 12 fourth-nearest
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526 D. Ter HAAR AND M. E. LINES

(or fourth) neighbours are on 2d, 3d, and 5d sites (4 on each sublattice). The XYZ axes
in figure 1 are along the cubic axes of symmetry of the f.c.c. lattice.

Consider now the energy of the interaction between the central 8d atom and its 8a
first neighbour (figure 2). To be able to take into account the crystal structure we choose
%', y', and 2z’ axes along the (1,1,0), (—1,1,0), and (0,0,1) directions and write
(compare (1-15))

Vad, ga = 2J,5848824-27, 884,882 4- 2.7, 584 §82, (2-1)

z

where the superscripts on the §' denote the atoms to which the spins belong, and the sub-
scripts their components. For later discussions it is convenient to write the J; as the sum of
an isotropic and an anisotropic contribution

h=J 4 dy Jy=J+dy Jy=J+d, Jtdytd, =0, (2-2)

V4

J3(0,0

Ficure 2. Nearest-neighbour interactions in the f.c.c. case,

In many cases we shall find that the stable antiferromagnetic order corresponds to all
spins alined parallel or antiparallel to a given direction, n. In that case it is convenient to
introduce a system of co-ordinates 2'—the ¥, y, z system—such that this preferred direction
n is along the x axis, say. In that case we may in the molecular field approximation put all
y and z components of spins equal to zero. The system 2" may be obtained from the co-
ordinate system X, which is the X, ¥, Z system by a real orthogonal transformation

3= AZ, (2-3)

where 4 is a unitary operator which can be represented by a 3 x 3 matrix with elements
a;; which satisfy the unitarity conditions

Z Qi Ay, == Z ;0 = Oy, (2-4)

where dj; is the Kronecker d symbol.
In the co-ordinate system X" we get for V4 g, the complicated expression
I/;%d,Sa = Ji[(ay,+ay,) S8d (ag, +ag,) S§d+ (as)asy) Sgd] [(a), +ay5) S84 (ag, +-ayy)
X 852+ (ag) +ass) S22+ Sl (a1, —an) 839 (@ —agy) Sy -+ (ay—as;) S29]
% [(ay3—ayy) SE+ (A — ) S5+ (a5 —ag)) S22]
+ 2»’:3[“13S7§d‘|‘423sgd+433'5§d] [01353a+dz3533—4335§a]- (2:5)
If we consider the interaction between the central 8d spin and its 3c first neighbour,

we get Vpd, 3o = 2J, 884830 2.1,$84.53 1 2], S84.53¢, (2-6)
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where now the x”, y”, z” are along the (—1,0,1), (1,0,1), and (0, 1, 0) directions in 2. We
can again transform from X to L” and get an equation similar to (2-5). After that we consider
in turn the other first neighbours and transform in each case the corresponding energy
expression—in each of which the components of the spins which multiply J,, J,, and J;,
respectively, are those along appropriately chosen axes which are different in each case—
from X to 2. ;

To find the total interaction energy due to first neighbours, 784, we have to sum the
resultant twelve expressions. The resultant expression is highly complicated. Assuming,
however, that the X" system is, indeed, one in which the x axis is along the direction of the
spin alinement in the ordered state, we can invoke the molecular field approximation,

z 00D
| KE10,0)
8] v eal/ %010
/ Ba /

F1eure 3. Second-neighbour interactions in the f.c.c. case.

take the averages of all spin components, and put all ¥ and z components equal to zero.
In that case V¥4 reduces to the expression

Vi = S34{N[(a114a15)® (S22 +S32) + (a1, — a19)* (32 -+ 87%) + (@15 @) (SEP+ SEP)
+(@12—a15)? (ST +S3°) 4 (ay1 +a15)? (S2°+879) + (@ —a13)* (S35 +589)]
+ Sl (@11 —a12)? (S32H53) + (a1 +a19)* (S5 +57%) + (a15—a13)* (SEP+S5P)
+(argta15)? (S3P+S5EP) + (a1, — ay5)® (S2°+87) + (ay; +ay5)* (S3+5%°)]
+2J5[ady (877 453+ 5724 572) + af (S5 + SPP+ 7P +53P) +ady(Syo+ 870+ S +58) I}
(2:7)
In the following we shall whenever we have used the molecular-field approximation in
expressions such as (2-7) drop the subscripts x to simplify our notation. :
We now consider the second-neighbour interactions (see figure 3). If we consider,
for instance, the 8d-6d interaction, we see that the ¥ axis is a fourfold axis of symmetry
so that we should expect only two different parameters at most. Choosing the «’, ', 2’
axes along the (0,1,0), (—1,0,0) and (0,0, 1) directions, we can write

Vad,sa = 2K, 884884+ 2K, 584554+ 2K, §84.554, (2-8)
where we shall later write
K,=K+K, K,=K+K, K,+2K, =o. (2-9)
Transforming to the X’ system and using the molecular-field approximation we get
Vsa, 60 = SP[2K, 03,537+ 2K, a3, 537+ 2K,02, 53], (2:10)

and for the total interaction due to second neighbours, V§9, we get
V4 = SOUAK, [oF, 8743, + afy 1]
+4K,[ (af, +ais) ST+ (afy +afy) SO+ (af; +afp)$*4]}  (2-11)
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528 D. Ter HAAR AND M. E. LINES
As we assumed the third- and fourth-neighbour interactions to be isotropic, we can
immediately write down the corresponding interaction energies V84 and V§9, and we have
V?t)}d - 4:LS8d[S1a*|—‘S2a‘+Ssa+S4a—|—S1b+S3b—|—S5b+S7b—|“SIC+S2C‘f—S5C+SGC], (2.12)
V§d = 8 MS8A[§2d 4 §3d . §5d], (2-13)
where L and M are the isotropic interaction constants.
The total interaction energy V284 is now given by the expression

V8d — pdy p8dy yhdy phd, (2-14)
and the molecular field H7$- in which the central field is situated is given by the expression
. V8d
Hyd = - o g0 (215)
so that the total effective field acting upon the 8d atom, H, is given by the expression
V8d
Hiy = Hey -+ H5Y = Hey, g, S5 (2-16)
From (1:8) we now get for the average value of §%¢ (note that all $* except $8¢ were
already averages) S84 — 1AS(S 1) gy S, (217)

where we have retained the notation $8¢ for its average, so that now all §7 are averages in
(2:17). We also note that we have assumed H,,, to be in the x direction.
If we use (2-7) and (2-11) to (2-17) we get
08— gty Hlg, — [N -7 S95-4-42) 4y ($53+ 890) 4} (S°2-1- 7
(ST §3P - 5B §7DY iy (§4b | §EB) L. ! (G2 §BB) N (S1e- §2¢ 4 e §6<)
g (1S4 +87€) 4 py(S3¢ - 8BC) 4 oS24 $3d 4 §54) 1§, §7d 4 §, 864 1§, §44]},  (2-18)

where ¢l =1pS(S+1), (2-19)
p; = (ay+ay.)?J;+ (ay;—ay;41)% Jy+ 24,9 J5, (2-20)
p; = (ay—ayy) 2 I+ (ay+ay40)° Jy+2a%;, 55, (2-21)
0; = 4[af, K+ (af;y 1 +ai;r0) Ko, (2-22)
A=4L, u=8M, (2-23)

and where here and henceforth
ay=a,, and a;;=a,. (2-24)

We can repeat the procedure with an atom of a different sublattice as the central atom.
If we do this for all thirty-two sublattices, and then sum the resultant 32 equations we get

38 = ¢1[32uy oy — (247 + 12K +48L+24M) 3 5, (2:25)

where the summations are over 32 spins, one on each of the different sublattices. From (2-25)
we get for the total magnetization M which is now given by the equation

~ Ngup « )
M ==257 §i S (2-26)
- _ N(gnp)®S(S+1) Hexe, _
the expression M = SK(T - 0) ) (2-27)

where the Weiss constant ® is given by the expression
O =3(2J+K+4L+2M), (2-28)
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A MOLECULAR-FIELD THEORY 529
where 4T  45(S+1) )
¥ = RN I (2-29)

We note that for the f.c.c. magnetic lattice the Weiss constant does not contain any of the
anisotropy constants. This means that the susceptibility y above the transition temperature
should be isotropic.

To find the transition temperature, we put H,,, = 0 in the 32 equations for the 32 S,
and this leads to a secular equation of the form

Dyee. =0, (230)

where the 32 x 32 determinant D . is the one given in figure 4. This determinant can be
factorized. The different factors are

(1) g0+ 0ym+-0y— 40— 21, *
(2) @—0,+0+05—p—4A+2pf,

(3) ¢+0,—0+05—pu+4A—2p7,

(4) @40, —0+05—pu—4A+2p5,

(5) @404 0,—05—pu+41—2pf,

(6) ¢+0,40,—05—p—4A+2pf,

(7) @+0,—0,—05—u+2p3,

(8) ¢+0,—0,—d5—pu—2p3,

(9) ¢—0,+0y—d5—p+2p3,

(10) ¢—0,+0,—d3—p—2p3,

(11)  ¢—0,—0+0d5—pu+2p7,

(12) ¢—0,—0,+d5—pu—2p7,

(13)  @—0,—0,—0d5-+3u—2p7 —2p5 —2p3,
(14) ¢—0,—0,—05+3u—2p7 +2p5 + 203,

(15)  §—0y—0,— 8-+ 3u-+ 2p7 — 205+ 295,

(16) ¢—0,—0,—0d5+3u+2p7 +2p7 — 293,

(17)  §0,40,+8,+ 3+ 122+ 20 + 25+ 258,
(18) @40+ 0y + 05+ 3u—4d+ 207 — 20F — 23,
(19)  ¢+0,+0y+ 05+ 3u—4A— 207 -+ 205 —2p3,
(20)  @+0;+0,+05+3u—40—2pf —2pf 4 2p3, |

where piE=pitp; (1=1,2,3). (2-32)

g (2-31)

Of the 20 factors of (2-31), the first 12 occur twice in D;... Each of these factors may
separately be put equal to zero, and thus lead to a possible transition temperature. The
Curie temperature, T¢, is that temperature at which ordering first sets in, that is, it will be
the largest of the possible 7; (z = 1, ..., 20; z corresponding to the 20 possibilitics of (2-31)).
Each of the 7; will be a function of the a;;, that is, each of them will depend on the actual
orientation of the spins in the ordered antiferromagnetic state, and 7 will be the largest
possible 7;, allowing for all possibilities of orientation. We shall thus be able to predict

12
which ordered pattern will occur, as it will be the one for which T, is a maximum. Once

65 Vor. 254. A.
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T; has been found, the 32 simultaneous homogeneous linear equations for the $¢ can be
solved, and from these equations we can then find whether the spins on a given sublattice
are parallel or antiparallel to the preferred direction of orientation. In practice, we shall
not actually solve these equations but use Anderson’s theorem (1950) quoted in the previous
section that 77 is proportional to the maximum exchange energy which one can obtain
by assuming constant magnetization on each of the sublattices.

¢ 6 0 p O3 p p O Py p3 A A pypyg A A p2 A pz A py A py A pLPLPL P A A A
_ O ¢ p Oy p 650 p Py ps A A py py A A APy A py A opyAopy Py pLPL P A A A
< Oy o 6y pp 0 G5 p A A pypy A A pgpy Pz/\/Pz/\Pz’lpzf\, PLpL P LA A A
_ B0y 8 ¢ 0 pop b /\//\Paps’\’llpaps /\,Pz/\Pz/\PZ/\/Pz PlPiPiPl/\/\//\/
< O oo 0 ¢ & 0 p Py Py A A py py XA Pz A py A py A py A A XA pyptopi
>_(>-4 woo3 0 p b op by P3P3/\,/\P3P3/\/\I AP2/\/P2/\/P2/\92 AA A X pppp
O[—1 w0 8 p by p g /\93/0;_/1/1@93 P2/\P2/\/P2/\/P2/\ A/\/\/\plp}pl
m[—ﬂ 0 u pw o5 p 0,0 ¢ A A pgps XA Py ops pa A py A ps A py A XA A pyppop]
)
= O Py Py A A pyp A A @ 0 0y p O3 pppp O PLPLPLPLA A A A Py A py A py A p;
O Ps ps A A py py A A O ¢ p Oy p 050 p PL PP LA A LA A py A py Aoy
~w A A pypy A A pypy Oy i @ 0y 0 05 p pPLPiPL A A LA Py A py A py A py
o A A pypy XA ps py W Oy 6y ¢ 0 pop By PLPLPLPLA A XA App A py A py
<Z Py Py A A p3 py A A O3 o o 0 ¢ 8 0, p AA A A pLpypypy A P2 APy Ay
= Ps Ps A A pyps A A w0 0 p S pop S A XX Xpipiprp A pyAopyAopy A
EI: A A py pg A A pg py w0 O3 p Oy p P 0 A XA A pyprprpy Pa A Py A py A py
825 A A pgpy A A pyopy 0 pu p o5 p 6,0, ¢ A A A X prp PPl A py A py A py
7]
9z P2 A pp A py A opy A PLPLPLPLA A A A $ 0 0 p Oy p pp 0 Ps py A A py py A
T Npg X py X py Ay ppypy oA AAA O g by p 850w pypy A A pypy A
- pr X pa A pp A py A Py pL PP A A A A O p ¢ 6y pp 0 O3 p Aopypy A A py
A,P//\Pz/\PzA,Pz PlPlPlPi’\/’\’\/\/ w0y 8 ¢ 0 pop b /\/\,P:spa/\//\Pa
P2 A pp A py A py A A A XA pypypy Py O3 p0 o 0 ¢ 0, 0, po Py P3 A A py py A
A ppA Py X py A py AAAXXpprprpe 00 p 0 8y pypy A A pypy A
Py A py A py A py A A A XA pyprpLpy w08 p 8 p ¢ 0 A A pyps A A py
App Xopyr Xopy A py A A XA pyppy Py 0 p p 05 p 8 6 ¢ A A pspg A A py
Py pLPL P A A A A Py A py A py A py A P3Py A A pypy A A ¢ 01 8 p By pop
pLPLPLPLA A AL /\Pz/\Pz’\,Pz’lpz Paps/\,/lpspa/\/\, O, ¢ p O p 63 0
PLPy P PLA A A A Py A Py A py A py A A A pypyg A A pype O p ¢ O p 0
pipipLPp A A AA Apy & py A py A py A A pyps A A pypy 0y 0 ¢ 0 pop
AA A prpiprpy pa A pp A pyAopy A Py p3 A A pypy A A O p g 0 ¢ 8 0,
AA A A pLpy Py Ay App A pp A pyApy Py py A A pypy A A # 030 p o ¢ p
A A XA prpypy Py Py A py A py A py A A A pgpyg A A pypy po0 b8 p by p ¢
P | A A XA pypLpL A App Apy A opy Aoy A A pyps A A py Py 0 pp 8 p 0 0
’_; ~ Ficure 4. The determinant of the secular equation for the f.c.c. case
;5 = The solutions for the 7} are
~ N
o Tyor — [2J — K—4L-+2M— (Ky-+J,) (1—3a3)1¥,
E—lg T,; = [—2J—K+4L+2M—(K,—J,) (1—34};)] ¥,
= w T2j+5 = [K‘|‘2M+2a1jalj+1(Ja_Jﬁ) +Ko(1 _3"%]42)] v,
Ty = [K+2M—2a,;a,;,,(J,— Jp) + Ko(1—=3a3;,,) 1 ¥, (2:33)

T3 = [3K“6M+2(Ja_‘*]ﬂ) (an1@12+ @015+ ar3a1)] ¥,
7}+13 = [3K“6M‘|‘2(Ja“‘*]ﬂ> (aljaljﬂ“a1j+1alj+2—alj+2alj>] v,
T, =—[6J+3K+12L+6M]y,
Ty = [2J —3K+4L—6M+-2J,(1—34};,,)] ¥,
where we have used (2-2), (2-4), (29), (2-24), and where each timej = 1, 2, or 3.
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To see how one can find the types of order we shall discuss the case of 774. This temperature
is proportional to a quantity «,5 where

Kyg = 0y + 0y 03+ 3 — 4A+2p, + 2p1 — 2p, — 205 — 2p3 — 2ps, (2-34)

and «,3 must therefore by Anderson’s theorem also be proportional to the exchange energy
of the central atom with its surroundings. [If we assume that the J, K, L, and M are all
positive, we see from (2-20) to (2-23) that the §;, p;, p;, A, and g are also all positive.] From
(2-14) and the fact that 784 should be proportional to «,; we see that the spins on the 1d,
2d, 3d, 4d, 5d, 6d, 7d, 8d, 5a, 6a, 7a, and 8a sublattices must all be parallel to one
another and they must be antiparallel to the spins on the 2b, 4b, 6b, 8b, 3¢, 4c, 7c, and 8c
sublattices which in turn must all be parallel to one another. About the spins on the 1a,
2a, 3a,4a, 1b, 3b, 5b, 7b, 1c, 2¢, 5¢, and 6¢ sublattices we can only say that four of these
sublattices must be parallel to the spins on the 8d sublattices and 8 of them antiparallel.
By considering either other central atoms, or the original homogeneous equations one can,
however, verify that the intuitive choice of 1a, 2a, 3a, and 4a for the first group and 1b,
3b, 5b, 7b, 1c, 2¢, 5¢, and 6c¢ for the second group is, indeed, the correct one. This type
of ordering is called type 1 ordering and the particular ordering pattern corresponding
to 114 is given in figure 5.

If we perform the same analysis to the other 7] we find that 7}4, T4, and T}, correspond
to type 1 order; 714, 114, 115, and T4 to type 2 order (see figure 6, which corresponds to
1,),T,1,,T,1T,,T;,and T to type 3 order (of which there are two modifications 3A and 3 B
to be discussed presently, which are drawn in figures 7 and 8; figure 7 corresponds to 7
and figure 8 to 1y), 17, T, Ty, T}y, 11, and T}, to type 4 order (see figure 9 which corresponds
to 77;; here there are also two modifications: if 7}; corresponds to type 4A, 7}, will corre-
spond to type 4B), and finally 7}, corresponds to a ferromagnetic order, where all spins are
pointing in the same direction.

We have followed here and everywhere in this paper the usual convention that the
number of the type of order increases with increasing dimensions of the repeated magnetic
ordered structure.

Having found for each 7; the type of order to which it corresponds, we must now examine
the total energy of the lattice. First of all, we find for each 7; the most stable ‘proper’ anti-
ferromagnetic order; we define a ‘proper’ order as one for which all spins are parallel or
antiparallel to a single direction, n. This direction is found from the expressions for the
7} by maximizing these with respect to the g;;. We finally examine the proper types of order
found in this way to see whether they are, in fact, stable; this is done by seeing whether the
total interaction energy is an extremum when the $¢ are varied. If we do this, we find that
all type 1 and type 2 ordering patterns corresponding to a proper antiferromagnetic order
are stable.

The situation is different, however, for type 3 and type 4 order. Consider the 3A and 3B
ordering patterns of figures 7 and 8, and recall that the total interaction energy will be
proportional to 75 (or 7). As long as the a and b sublattices together, and also the ¢ and d
lattices together, are properly antiferromagnetically ordered, there will be no net inter-
action energy between the a and b sublattices, on the one hand, and the c and d sublattices,

on the other hand. The actual type of ordering which will occur is thus found by setting each
65-2
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of these two independent lattices separately into its energetically stable position. This
may or may not result in a ‘proper’ order.

The molecular-field theory gives the type of order which will be most stable at 7.
Whether this order remains the stable one below 77 has been discussed by Smart (1952).
In theory there is no reason why there could not be transitions to other types of order below
T;, but there is little empirical evidence for them; we shall therefore assume that they do
not take place, so that the type of ordering which will produce the largest value for 7, can
be identified with the ordering determined experimentally.

We shall now discuss the various types of order in somewhat more detail.

Ferromagnetic order. There is only one 7] corresponding to ferromagnetic order, and that
is T}, which is the only 7; which is independent of the anisotropy parameters and of the a;;.
Our theory does, therefore, not give any information about the preferred direction of
ordering. This means that the kind of anisotropy interaction which fixed the axis of ferro-
magnetism in a f.c.c. lattice cannot be expressed in the form we have used.

Type 1 order. We see from the expressions for Tig, 734, and 7, that their maximum values
are governed by the sign of J,. If J, is negative, T}g is maximum when a}; = 1, that is

so that the preferred direction n is along the positive or negative Z axis.
If J, is negative, T}4 (7T3) corresponds to n along the positive or negative X axis (¥ axis).
If, on the other hand, J, is positive, 714 is 2 maximum when

a3 =0, afj+a,=1, (2-36)

so that n may be anywhere in the XY plane. Similarly n will be anywhere in the YZ plane
(XZ plane) for the maximum value of T4 (75)-

Type 2 order. We see from the expressions for 715, 714, 15, and T}, that there will be a
different type of order pattern for J, > J; and J, < J;. To fix our ideas, we shall consider
Ty I£J, > Jp, Ty, is maximum when

ay = a1y = —a;3 = 1/,/3. (2:37)

The order itself consists of ferromagnetic [1, 1, —1] planes adjacent planes being anti-
ferromagnetically alined (see figure 6). From (2-37) it follows that the spins will point at
right angles to these planes, so that n is along the (1, 1, —1) direction.

If, on the other hand, J, < J;, T}, is maximum when

a4y +a,—a;3=0, (2-38)

corresponding to n being somewhere in the [1, 1, —1] plane.

The situation is similar for 774, 77;, or T}, where the [1, 1, —1] plane is now replaced by
the [1,1,1], the [—1,1,1], or the [1, —1, 1] plane, respectively. If J, > J;, n will be
perpendicular to those planes, and if J, < J;, n will be somewhere in those planes.

As mentioned before, for types 1 or 2 orders, all alinements are ‘proper’ so that all spins
are either parallel or antiparallel to the preferred direction n. This means thatin the present
theory we shall not encounter models with type 1 or 2 order and spins on different sub-
lattices making angles other than 0 or 7 with one another; such models have been suggested
by other authors (for instance, Li 1955; Roth 1957).
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We wish to conclude the discussion of type 2 order by saying a few words about the type
2B order proposed by Li (1955). We do not obtain this type of order, but the reason for this
can easily be seen. The theory as we have developed it assumes that the interaction energy
of any atom with its surroundings is the same, no matter upon which sublattice the chosen
atom may be. Our theory will thus predict only those types of order which are ‘homo-
genecous’ in this sense. Although Li’s type 2B order is homogeneous when the exchange
interaction is assumed to be isotropic, this is no longer the case when anisotropy is intro-
duced. The interaction energy E4 of a d sublattice centre with its surroundings differs
from the energies E,, E,, and E, of an a-, b-, or c-sublattice centre with their surroundings,
the differences vanishing with J,, Jy, J,, K, and K;. Moreover, we find that the 7; corre-
sponding to the type 2B order would be given by the expression

Ty = (3K—6M) ¥, (2:39)

and we can always make 715, 7},, T}, or T4 larger than 7, whatever the sign or magnitude
of J, —J;. The type 2B order will thus not be stable as long as J, + Jj.

Type 3A order. We see from the expressions for 77, T, and 7 that the ordering pattern
will depend on the sign of J, K. If this quantity is positive n will be along the (1,0, 0),
the (0, 1,0), or the (0,0, 1) direction depending on whether we are considering 7}, 73, or 7.
If, however, J,+ K, is negative n will be along an arbitrary direction in the YZ, the XZ or
the XY plane, and the ordering is not necessarily a ‘proper’ one.

Type 3B order. We see from the expressions for 7,, T}, and T that this type of order is
only likely to occur, if some interactions are ferromagnetic and some antiferromagnetic;
this is in contrast to the other types of order which may well occur with entirely antiferro-
magnetic interactions. The preferred orientation n is now again along the (1,0, 0), the
(0,1,0), or the (0,0,1) direction if J, < K, depending on whether we are considering
1,, T}, or Tg, while if J, > K, n will be somewhere in the [1, 0, 0], the [0, 1, 0], or the [0, 0, 1]
plane and the ordering need not be proper.

Type 4 order. We have really two slightly different type 4 orders. Figure 9 shows the type
4A, and the type 4B is obtained from it by reversing all the spins on the c-sublattice sites.
In type 4A order the ¢ and d sublattices together arrange their spins in ferromagnetic
planes (in figure 9 the [1, 0, —1] planes), and the a and b sublattices in ferromagnetic
planes at right angles to the former planes (in figure 9 the [1,0, 1] planes). In type 4B
order all arrangements are in parallel ferromagnetic planes (if we reverse the spins in
figure 9 all spins are in ferromagnetic [1, 0, 1] planes).

The directions of the spins depend on the relations between K, J,, and J;. We shall give
the directions for the type 4A order corresponding to 77, and for the type 4B order corre-
sponding to 7}, The directions corresponding to 73, Ty, Ty, and 7}, can be obtained by
cyclic permutations. There are three possibilities: (i) J, > Jj, Ko > 0, or J, > J;, K <0,
J,—Jp+ 3Ky > 05 (ii) J, < Jp, K> 0, or J, < Jp Ky <0, Jp—J,+3K,>0; and (iii)
K, <0, 3|Ky| > |J,—Jp|. In case (iii) n will be along the (0, 1, 0) direction for both type
4A and type 4B order; the order is proper. In cases (i) and (ii) the type 4A order is not
a proper one: the spins on the a and b sublattices will be at right angles to the spins on the
¢ and d sublattices; the type 4B order will, however, still be a proper one. In both
cases (i) and (ii) the spins will be orientated along face-diagonals in the (0, 1, 0) planes; in
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case (i) they will be oriented at right angles to the ferromagnetic plane in which they are
contained, while in case (ii) they will be oriented in those planes.

We note in conclusion that no matter what are the values of the exchange parameters,
there is in the present theory no preference for either type 4 A or type 4B order.

3. COMPARISON WITH EXPERIMENTAL DATA ON FACE-CENTRED CUBIC MAGNETIC LATTICES

So far we have considered only an isolated f.c.c. lattice of magnetic atoms, and we have
neglected the presence of the non-magnetic atoms. We know that such anions are extremely
important as far as the isotropic exchange is concerned, as they are essential for super-
exchange. We must therefore investigate carefully for each crystal structure whether the
position of the anions should force us to modify the form of the anisotropy which we intro-
duced for our magnetic lattice.

Most of the f.c.c. antiferromagnetics for which we have experimental data have the rock-
saltcrystalstructure; the anions are situated midway between each pair of second neighbours.
The rhombic symmetry for first neighbours and the axial symmetry for second neighbours
are both preserved when the anions are included, and the theory of the preceding section
should be applicable.

Recently, Corliss, Elliott & Hastings (1956, 1959) have studied f.c.c. antiferromagnets
with zinc blende and with pyrite crystal structures. In neither of these cases are the sym-
metries of the isolated magnetic lattice preserved. In both cases, however, the positions
of the anions lead us to expect that the first-neighbour-exchange energy will be consider-
ably larger than the interaction energies involving more distant neighbours. As we have
already rhombic symmetry for the first-neighbour-exchange interaction, we shall suppose
that again the theory of the preceding section is applicable—or that it will at least give a
fair approximation for these cases.

The best test of the theory is obtained by examining neutron diffraction results for the
observed directions of spin alinement in rocksalt-structure f.c.c. antiferromagnets. Ex-
amples of such antiferromagnets are MnO, CoO, FeO, NiO, aMnS (Roth 1958), and
CrN (Corliss, Elliott & Hastings 1960). All these, except CrN, show type 2 order. FeO has
its spins alined at right angles to the ferromagnetic [1, 1, 1] type planes. MnO, NiO, and
«MnS have their spins ordered somewhere in the ferromagnetic planes, but experimental
data have so far not yet revealed the direction of alinement more precisely. These results
are all in accord with the present theory.

The case of CoO is probably slightly anomalous, as is shown by its ®/7, value; it is thus
not surprising that the spins seem to be alined in a direction slightly out of the ferromagnetic
plane.

CrN shows type 4B order, but the preferred direction of spin alinement has not yet been
determined. As type 4 order will not occur, unless more-remote-neighbour interactions
are taken into account, this case shows the danger of neglecting these interactions.

MnS,, MnTe,, and MnSe, (Corliss ¢ al. 1959) are pyrite structure f.c.c. antiferro-
magnetics. MnS, shows type 3A order and has its preferred direction of ordering along
the unique cubic axis, corresponding thus to a J, value which is probably positive (if we
make the plausible assumption that |K,| < |J,|). MnTe, shows type 1 order with its
preferred spin direction at right angles to the unique cubic axis, again pointing to a positive
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J, value. MnSe, is of great interest in that it shows a type of order which is not homogeneous.
It is easy, however, to adapt the molecular-field theory for this case to find an expression
for T,. We found that this particular type of order can be stable only if anisotropy is included
in the exchange energies. Moreover, we found that the observed direction of spin alinement
is the direction predicted if J, is positive. As the three salts are isomorphic, the prediction
of a positive J, in each case is, perhaps, not merely coincidental. Finally, fMnS is a zinc
blende f.c.c. antiferromagnetic (Corliss ¢ al. 1956) which shows type 3A order with spins
alined at right angles to the unique axis, indicating a negative J,.

A final point of interest is that the extension of the molecular-field theory to include
third- and fourth-neighbour interactions has removed the direct conflict between, on the
one hand, the large ®/7 ratios of about 10 which have been obtained experimentally for
some f.c.c. salts (for instance, K,IrCl; and (NH,),IrClg; see Griffiths et al. 1959) and, on
the other hand, molecular-field theory. We find, for instance, that if J = 2K = 4L = 8M,
and J, = J; = J, = Ky = K; = 0, O/T; = 15 for all T except 7};. Such values for L and M
may be on the large side, but the existence of type 4 order shows—as we mentioned a moment
ago—that neighbours beyond the second nearest neighbours may well have to be taken
into account. This result is in line with what Anderson (1950) found when he included for
the first time second-neighbour interactions. It must be mentioned, that the ®/7, ratio
decreases when anisotropy is taken into account.

It is generally accepted (cf. Marshall 1955) that the ground state of a f.c.c. antiferro-
magnetic with isotropic nearest neighbour interactions only will not be an ordered one.
This would mean 7 = 0, or an infinite ®/7 -ratio. The molecular-field method obviously
breaks down here as it predicts a Curie temperature equal to 2Jy for that case. We feel
that, in fact, the high /7 ratio found for the chloro-iridates is connected with this break-
down of the molecular-field method and not with the influence of higher order neighbours.

4. THE BODY-CENTRED CUBIC MAGNETIC LATTICE

We now treat the body-centred cubic (b.c.c.) lattice by the same methods. We shall
again consider a magnetic lattice without anions, and again we shall use enough sublattices
to allow for any possible order with a periodicity in any direction of up to two unit cell
lengths. We require sixteen sublattices and shall include first-, second-, and third-neighbour
exchange interactions which we shall take to be all anisotropic.

The b.c.c. sublattices are shown in figure 10; they are labelled 1a, 2a, ..., 8a, 1b, 2b, ...,
and 8b. For the first neighbours we can only define two exchange parameters which are
different, because the line connecting two first neighbours is a fourfold axis of symmetry
(see figure 11). If we take our &', y', z' axes along the (1,1,1), the (—1,1,0), and the
(—1, —1, 2) directions we can write for the interaction between the (central) 8a atom and
its first neighbour on the 4b site

Vaa, 4p = 21 S8a 84127, §8254b |- 2J,882854b, (4-1)

Again transforming to a X’ system, using the molecular ficld approximation to put in
2:(S,) = (8. = 0 for all sublattices, and dropping the subscripts x we get

Vaa,4b = $82§40[2], (ay) + @1y +a13) 2+ Ty(a — ayp)* +-3S5(a) + a1 — 2ay5)%]. (4-2)
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We get similar expressions for the interactions of 8a with the first neighbours on the 1b,
2b, 3b, 5b, 6b, 7b, and 8b sites.

There are six second neighbours: two each on the 4a, 6a, and 7a lattice sites. The line
connecting the central atom with a second neighbour is again a fourfold axis, and we can
introduce the exchange constants K, and K, in exactly the same way as for the f.c.c. case.
There are 12 third neighbours: four each on the 2a, 3a, and 5a sublattices. The corre-
sponding exchange parameters M, M,, and M; will be introduced in the same way as
J,, J5, and J; were introduced in the f.c.c. case.

VA
VA
; /
2 52 la Jy(1:12)
2a4” 4al/ 2a4” Ji111)
lag? 3ag” la/ /
1be 3be o
*4b
®2b o4 Iy
5a, 7a, 5al, 19) |
6al/ Bal/ 6al / " / |
Sagl Tal Sal/ : :
! ' 4
5be r4: L T i o’
®6hb 5 @8b
a, 3, 1a,
2a, bl 4aq” ' Za‘,/ '
la./ 3aq” lag”

Ficure 10. The sixteen sublattices of ~ Ficure 11. First-neighbour interactions
the b.c.c. magnetic lattice. in the b.c.c. case.

The total exchange interaction energy corresponding to the 8a atom is finally given by
the equation

82 — $8afp (S1P 4 §8D) 4 p, (84D S5b) -, (S3P 4 ,56P)

0y (S22 STP) 4 8, 8724 5,862 48, S42 4 0 42+ 0, §33 - 1, §55], (4-3)
where = &J\(ay, + a1, —ay3) 2+ Jy(ay; —ayy)? +55(a +ayp+2ay5)%, (4-4)
= &J\(ay, +ayy+ay) 2+ Jpay —agy) -+ 55(ay -+ ayy—2a,5)%, (4-5)
= 2J\(ay)—ay,—ay3)2 + Jy(ayy -+ agy)  +5do(ag —ayp -+ 2ay3)?, (4-6)
Py = 3y (a —ayp+ags)? +Jp(ay +ayp)? +55(a —a,—2a,5)%, (4:7)
0; = 4’Klali+4K2(ali+l+a%i+2)’ (4-8)
o = 4(M,+M,) (af;, 1 +a3i.,) +8M;al; (4-9)

Proceeding as before, we find (cf. (2:25)) ‘
35 = {164, o, — (16T + 12K+ 240) 587, (10)

66 VoL. 254. A.
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538 D. Ter HAAR AND M. E. LINES
where we have put Jy=J+d, SHh=J+J, Jy+2J,=0; (4-11)
K, =K+K, K,=K+K, K,+ 2K,=0; (4-12)

My = M+M,, My=M+M;, My=M+M, M, +M+M,—0, (413)

where the summation is over the sixteen sublattices, where ¢ is given by (2-19), and where
the external field is supposed to be along the x axis.
From (4-10) we get an isotropic Weiss constant

O = (4J+3K+6M) ¢, (4-14)
where ¥ is given by (2-29).

¢ 0 b o 0 o a 0 Pr Py P3 P2 P2 P3 P4 Py
o ¢ a5 0 P U Py P1 P2 P3 Ps P2 P1 Py
0 a3 ¢ 0, a 0 & o P3 P2 P1 Py Ps P1 P2 P3
ay 0, 0 ¢ 0 a a 0 P2 P3 Py P1 P1 Py P3 P2

d; a, a; 0 ¢ & & oy Py P3s Py P P1 Ps P3s P2
a, 0 0 oy 8, ¢ a3 0 Ps P2 P1 P4 Py P1 P2 Ps
0 ¢ 8 a3 ¢ 0 Ps P1 P2 P3 Ps P2 P11 Py

5 6 ¢ P1 Ps Ps P2 P2 Ps Py P

Ps P1 P2 P3 Ps P2 P1 Py 0 ¢ a3 4 oy O
Ps P2 P1 P4 Ps P1 P2 P3 d, ay ¢ 4 o 0
P2 Ps Py P P1 Py P3s P2 ag 0, o ¢ 0 o a, 0

P2 P3 Py P1 Pr Py P3P O ay o 0 ¢ O & a
Ps P2 P1 Py Py Pr P2 Ps a 05 0 oy o ¢ ag 0,
Py P1 P2 Ps Ps P2 P1 Py ap 0 05 o O ay ¢ 0
Pr Py P3 P2 P2 P3s Py P1 0 o a, & ag 0, 0 ¢

Ficure 12. The determinant of the secular equation for the b.c.c. case.

To find the transition temperature, we put H,, = 0 in the 16 equations for the 16 %,
and this leads to a secular equation of the form

Db.c.c. =0, (4:‘15)

where the 16 X 16 determinant D, . is the one given in figure 12. This determinant can be
factorized. The different factors are

(1) ¢—0,+0+05+a;—ay—as,

(2) ¢+0,— 0+ 05— +ay—as,

(8) @+0,+0,—03—a;—ayta,

(4) ¢—0,—0,—0s+a+ay+as,

(6) @+0,—0,— 05ty —ay—ag+2(—p;+p2+p3—p4),
(6) ¢—0,+0,—05—ay+ay—az+2(p,— P2+P3 P4)s

)
(7) ¢~—51—32+53——051_.052+053+2(p — ), (4-16)

) PO =0 —03+a —ay—az—2(— /’1+P2+/’3 P4)s
) =00y —d—aytay—a;—2(p— P2+P3 P4)>
(10) ¢—0,—0y+0d3—a;—ap+as—2(p +p,— P4)s
) P00y + 05+ ey +ap+az+2( +/’2+/’3+/’4)a
) P00y 05t oy +aptas—2(py +pytpytpy).

bb
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Of the 12 factors (4-16) the first 4 occur twice in D, ... Solving for T, we first of all
find the values 7; which make the different factors of Dy .. equal to zero. We find

7} - [_K+2M”—' (KO_QM)/) (1 “30%1')] ;ﬁa
T, — (3K—6M)

TZHj = [K+2M+ (K0+2My) (1 “3‘1:124') —3(JH—) “1j+101j+2] ¢, (417)
T3, = [K+2M+ (K0+2My) (1—3at;) +8(Jp— ) Ayjr1Qyj2] P2
T11 =(—4J—3K—6M) ¢,
Ty, = (4J—3K—6M) y.
Z zZ
A A A ¥
! ! i }
=} Y
\
) 4 1 )
A A A Y
X X

Ficure 13. Type 1 order for the b.c.c. case.  Ficure 14. Type 2 order for the b.c.c. case.

To find the kind of order corresponding to the different 7;, we perform an analysis similar
to the one in § 2. We find that 77, corresponds to type 1 order (see figure 13); 7 to type 2
order (see figure 14); T, Ty, 15, Ty, Ty, and 11, to type 3 order (see figure 15, which corre-
sponds to 7g) ; 1}, T;, and T; to type 4 order (see figure 16, which corresponds to 7;); and
T}, to ferromagnetic order.

We shall now discuss the various types of order in somewhat more detail.

Ferromagnetic order. As T}, is independent of the anisotropy parameters, we cannot make
any statement about the preferred direction of ordering.

Type 1 order. Again T}, is independent of the anisotropy parameters.

Type 2 order. Here also, T} is independent of the anisotropy parameters. One can show
that the a sublattices together must be alined antiferromagnetically, as must the b sub-
lattices. There is the possibility that the preferred directions of the spins may be different
for the a and the b sublattices.

Type 3 order. To fix our ideas, we shall consider Tg. If K+ 2M, is positive, or if

Ky--2M, <0 and 9|K,+2M,| < 4|J,—J,,
ordering takes place in the XZ plane. If J; > J,, the preferred direction will be along the
(1, 0, —1) direction, and for J; < J, along the (1,0, 1) direction. Finally, if

Ky+2M, <0 and 9|Ky+2M,| > 4|J—J,,
66-2
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540 D. Ter HAAR AND M. E. LINES

the preferred direction is along the Y axis. The situation is similar for 73, 75, Ty, Ty,
and 73,,. :

Type & order. If K,—2M, > 0, the preferred direction for 77 will be along the X axis, and
if Ky—2M, < 0, the preferred direction will be somewhere in the YZ plane, while the a and
the b sublattices may be ordered with different preferred directions.

If we put K = 4J. M = 1J, and neglect interactions more remote than third-neighbour
interactions we can get ©/7 as high as 7.

We must emphasize that the b.c.c. magnetic lattice appears but rarely in actual anti-
ferromagnetics so that the discussion in the present section is mainly academic. Many
antiferromagnetics exist, however, with a b.c.t. magnetic lattice which resembles the b.c.c.

Z Z

) S

Ficure 15. Type 3 order for the b.c.c. case. FIGUurE 16. Type 4 order for the b.c.c. case.

lattice in many ways, so that often the results for the b.c.c. case have been applied, with
some success, to tetragonal antiferromagnetics. In §6 we shall treat the b.c.t. magnetic
lattice properly, and we shall then be able to see in how far the b.c.c. case is a good approxi-
mation to the tetragonal case.

5. THE SIMPLE CUBIC MAGNETIC LATTICE

The case of the simple cubic (s.c.) lattice is also mainly of academic interest, but we have
included it for the sake of completeness. Again we have introduced enough sublattices, eight
in this case, to cover all types of ordering with a period of up to two unit cube lengths. The
sublattices are shown in figure 17. The central atom is taken on the eighth sublattice. Its
6 first neighbours, two each on the four, six, and seven sublattices, are in the same relative
position to the central atom as the second neighbours in the b.c.c. case, and we shall use
the same expression for the energy as was done in the previous section so that the first-
neighbour-interaction parameters will be denoted by K, and K,. The 12 second neighbours,
4 each on the two, three, and five sublattices, are in the same relative positions as the third
neighbours in the b.c.c. case. We shall use the same notation for the corresponding energy
expression which will thus involve the exchange parameters M, M,, and M,. For K, K,,
M,, M,, and M, we shall again use (4:12) and (4-13). The 8 third neighbours on the 1 sub-
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lattice are in the same relative position as the first neighbours in the b.c.c. case. The energy
expression will thus be of the same form as we have in the previous section. To emphasize
that we are dealing with more remote neighbours we shall denote the exchange parameters
by letters which are later in the alphabet: P, and P, for which we shall write

P, = P+P, P,=P+P, P+2P=0. (51)
VA
1 3 y
27 417 2,7
1./ 3 /“ 1“/Ib
5 7, 5
6L/ 8L/ 6L7
567 AV be” )2
1 3l 1)
247 iz 2L/
1“{‘—“—"'/“——3 o — 0/
X

Ficure 17. The eight sublattices of the s.c. magnetic lattice.

¢ P Py O ps Oy O v
Py ¢ O3 py 2 P V9
Py 03 ¢ p O v py &
0 py P P V.0 0 py
Py Oy O v ¢ PPy Oy
O ps v 4 pr P O py
o v opy G Py 05 ¢ p
Vo8 8 ps O py pr P

Ficure 18. The determinant of the secular equation for the s.c. case.
For the total interaction energy of the central atom we find in the same way as before
V8 = §8[p, 87+ py SO+ pg S+ 0,524 0,83+ 05,85 4-vS1], (5:2)

where we have invoked the molecular-field approximation to put all ¥ and z components
equal to their vanishing average value, where we have dropped the indices x, and where

p; = 4a3; Ky - 4(ad;, 1 +afi) Ky, (5-3)
0; = 8af;My+4(af;, +afi,) (M, M), (5:4)
v = 16P. (55)

We get again an isotropic Weiss constant which is now given by
® = (3K+6M—|—4P) v. (5'6)
To find the transition temperature, we must solve a secular equation

Ds.c. =0, (57)
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where the 8 x 8 determinant D, is the one given in figure 18. This determinant can be
factorized and its eight different factors are

(1) ¢+py—py—p3+0,—3,—03+v,
(2) d—p1Fpy—p3—0,+38,—0d5+v,

(3) ¢—pr—pytps—0;—0y+d5+v,
(4)  d—py+pytps+0,—0y—0d3—v,
s (5'8)
(6) P+p1—pytps—0+0,—0d3—v,
(6) @+pyFpy—p3—0;—0+05—,
() ¢—p1—py—ps+01+0,+05—,
(8) ¢+p1+pytpst0y+0y+05+v.)
Z
zZ
-y -}
|
]
|
Y X
Ficure 19. Type 1 order for the s.c. case. Ficure 20. Type 2 order for the s.c. case.
The corresponding 7; are
T, = [K+2M—4P -+ (K,+2M,) (1—3ai;)] ¢,
T, = [—K+2M+4P—(K,—2M,) (1—3a};)] ?ﬁ‘,‘ ‘ (59)

T, — (3K —6M-+4P) y, )
T, = (—3K—6M—4P) y.

We find that 7, corresponds to type 1 order (see figure 19); 7, 75, and T7j to type 2 order
(see figure 20, which corresponds to T5) ; 7}, T; and T, to type 3 order (see figure 21, which
corresponds to 7y) ; and T to ferromagnetic order. All types of order are ‘proper’ ones.

Ferromagnetic and type 1 order. T, and T are independent of the anisotropy parameters,
and there is no preferred direction.

Type 2 order. If Ky+2M, < 0 the preferred direction for 7} is along the Z axis, while if
K,+2M, > 0 it may be anywhere in the XY plane.

Type 3 order. If Ky—2M, > 0 the preferred direction for 7} is along the Z axis, and for
Ky,—2M, < 0 somewhere in the XY plane.
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1b® 3b®
54l ©2b 7a] @4b bal

5b® | 7be
lal @6b 3a) _®8b 1a!
2al / 4al” ‘Za,’/
ao/' 3al / Tal / 2ay

X

Ficure 21. Type 3 order for Ficure 22. The 16 sublattices of
the s.c. case. the b.c.t. magnetic lattice.

6. THE BODY-CENTRED TETRAGONAL MAGNETIC LATTICE

Many antiferromagnetics, such as MnF,, have their magnetic ions upon a body-centred
tetragonal (b.c.t.) lattice. The lattice structure of the crystals themselves is often the rutile
structure. In the present section we shall discuss the isolated b.c.t. magnetic lattice, and in
the next section we shall consider the modifications to be introduced when the anions change
the structure from the b.c.t. to the rutile one.

The b.c.t. magnetic lattice is shown in figure 22. We have now sixteen sublattices and
will take first, second, and third neighbours into account. We must tread rather warily
here. In most of the antiferromagnetics with a b.c.t. magnetic lattice, the ratio of ¢, to q,,
that is, of the distances between atoms along the Z and along the X or Y axes (see figure 22)
lies between 0-6 and 0-8. Consider now a central atom on an 8a site. There are two first
neighbours on 4a sites, eight second neighbours on the 1b, 2b, 3b, 4b, 5b, 6b, 7b, and 8b
sublattices, and four third neighbours: two each on the 6a and 7a sublattices. The fourth
neighbours are the eight atoms on the 2a and 3a sublattices, but these are only fractionally
nearer to the central atom than the next 8a atoms along the Z axis. These latter atoms could
only be included, if we introduced more than sixteen sublattices, and we decided therefore
to neglect both fourth and fifth neighbours.

The total exchange interaction deriving from first-order interactions is given by the

equation
Vi = 4,882 512 444,582 832 47,582 522, (6-1)

where the #', ', and z’ directions are along the (0,0, 1), (1,0,0), and (0, 1,0) directions.
We have used here the fact that in the b.c.t. lattice the Z axis is a fourfold axis of symmetry.

The second-neighbour-exchange parameters K, K,, and K; are introduced such that
we have, for instance,

Vya sp = 2K, S840 2K, 582 54b 1 2K, S3.54P, (6-2)
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where the &, 3, and z’ directions are parallel to the unit vectors (P, P, Pw), 27*(—1, 41, 0),
and (@, @, —2Q/w) (see figure 23), where
b po b o
“Ta T yEey T e
The third-neighbour-exchange parameters M, M,, and M, are associated with the
following directions: A, with the line connecting the central atom with the third neighbour
considered, M; with the Z direction, while M, is associated with a direction perpendicular
to the first two directions.

(6-3)

A A y’e
N

Bagy v
_X/ 52,

Ficure 23. Second-neighbour interactions in the b.c.t. case.

| /

The total exchange energy V' attributable to the central 8a atom is given by the
equation (cf. (4-3))
V'8a —_ S8a[VS4a_|_6S7a_|_8’S6a+pl(SlerSBb)
oSS 4 py (S-S (S S], (64)

where we have again transformed to 2’, put all y and z components equal to zero, and
dropped the index x everywhere, and where

v = 4[aty Sy + (af, +-afy) Sy, (65)

3 4la M, + afy My + i, M), (60

0" = 4|ad, M, + a3, M, + a3, Ms], (6:7)

p1 = 2K, P*(ay; + a1 —way3)* + Ky(ay, — ay5)* + 2K5 Q*(ay; + a5+ 2413/ w)?, (6-8)
= 2K, P*(ay; +ayy+way3)? + Ky(ay, —ay5)* + 2K Q%(ay, + a1, — 2a,3/w)?, (6-9)
ps = 2K, P*(ay, —ayy—way3)* + Ky(ay; +a,p)* + 2K Q*(ay, —ayp+ 2ay5/w)?, - (6:10)

Py = 2K, P*(ay, —ayy+way3)? + Ky(ay, + ay9)? + 2K Q%(ay, —ayy—2a,5/w)% (6:11)

To V'8 we must add an additional term deriving from the anisotropy effect due to the
crystalline field. The anisotropy energy £, ; ascribable to the 8a atom will be of the form

By = 2[Daj;—3D(ai, +aiy)] (53%) = 3A(53%)* (6-12)
with A = 2D(3a%—1). (6-13)

In adding this term to V'82 we must bear in mind that £.; occurs once only while the
exchange energy terms all occur twice. To make allowance for that we must thus add

A($%2)2 to V'8 and get thus V8a = p'8at )(S§8a)2 . (6-14)

where we have again dropped the subscript x.
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Putting again Sh=J+Jd, JHh=J+J, Jy+2J =0; - (6-15)
K, = K+K, K,=K+K, K,=K+K, K,+K;+K,—0; (6:16)

My = M+M,, M,—M+M;, M,—M+M, M+M+M =0, (617)

and proceeding as before, we now find an anisotropic Weiss constant

O = [J+4K+2M— (3D + 3 Jy+M,+4P*K, 4 2Pw?K ) (1 —3a;)] ¢. (6-18)
We notice that ® now is anisotropic and that the susceptibility above 7} should thus
depend on the direction in which it is measured. From (6-18) we expect the susceptibility
to vary in magnitude from one extreme along the ¢, (Z) axis to the other extreme in the

XY plane. Whether the extremes are maxima or minima depends on the sign of the factor
of (1—3d2;).

p+A o6 & 0 v 0 0 0 P Py Ps Pa Py P3Py P
6 ¢+A 0 & 0 v 0 0 Py P P2 P3 Ps Py P1 Ps
& 0 $+A 0 0 0 v 0 Ps P2 P Py Ps  PL P2 Ps
0 & & dJ+A 0 0 0 v Pa P3P Py P P P3P
v 0 0 0 gp+2 6 & 0 P Py P Py P Ps P3P
0 v 0 0 6 ¢+A 0 ¢’ P3 P2 P Py Py P P2 P3
0 0 4 0 ¢’ 0’ p+A O Py Py P2 P3 P3 P2 P P4
0 0 0 v 0 0 & ¢+A P, Py P P Py Ps Py P
P P P3P Pe P3P P g+A & & 0 v 0 0
P4 P P2 P3 Ps P2 P Py 3[ p+A O ¢’ 0 v 0
P3 P2 41 P4 Py P P2 ] ) 0 ¢+A & 0 0 v
P2 P3 P4 Py P1 Py ] P2 0 o’ d  ¢+2A 0 0 0
Pa P3Py P Pr Ps P3Py v 0 0 0 p+A o &

Ps Py P1 Py Ps P Py Ps 0 v 0 0 6 ¢+A O
Ps P P2 P3 Ps Py P1 Py 0 0 v 0 & 0 ¢+A
P Py P3 P2 P2 Ps Py P 0 0 0 4 0 o’ 5 ¢

Ficure 24. The determinant of the secular equation for the b.c.t. case.

To find the transition temperatures we must solve a secular equation
Dy, =0, (6-19)
where the 16 X 16 determinant D, ., is the one given in figure 24. Once again the deter-
minant can be factorized and the different factors occurring are the following ones
(1) +0+0"+v+2(p1+pp+ps+p4) +4, )
(2) G308 +v—2(p,+py+patp) A,
(8) ¢+0—0"—v+2(—py1+patps—py) +4,
(4) ¢—0+0"—v+2(p1—patps—ps) +4,
(5) G—3—8+v+2(p,+pa—pa—p) 1,

(6) ¢+3*‘“6,“‘V“’ (=p1+p2tps— P4)+/I:> (6:20)
(7) ¢—0+0"—v—2(p;— 2“}“/’3 ps)+A,

(8) §—0—8+v—2(py+py—pa—p) +1

(9) ¢—0—0"—v+A4,

(10)  §—0-+8" +v-tA,

(11) ¢+d—08"4v+A,

(12) G438 —v4A.

67 Vor. 254. A
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The last four factors occur twice in Dy .. For the 7; we find
Ty =[-J—4K—-2M+ (§D—J+M,+4P?K,+2Pw?K,) (1—3a};)] ¥,
1y =[—~J+4K—-2M+ (3 D—J+M,—4P’K,—2P>w?K,) (1 —343;)] ¥,
Ty = [J+ (3D +J) (1—3aiy) + (M, — M) (a3, —aty) — 8wP?(K, — K3) arpa13] ¥,
Ty = [J+ (3D +J) (1—3ady) + (M, —M,) (af, — af,) + 8wP?(K, — Ky) ay a1] ¥,
T = [—J+2M+ (3D — J;— M,) (1 —3ai;) — {8P*(K, — K;) + 4wP*(K3— K,) fay,a1,] ¥,
Ty = [J+ (3D +J) (1 —3ai;) -+ (M, —M,) (al,—ai) +8wP? (K, — K3) aypa15] ¥,
T, = [J+(ED+J) (1—3aly) + (M, —M,) (a}, —ai,) — 8wP?(K, — K3) ayya15] ¥,
Ty = [—J+2M+ (3D —J;—M,) (1 —3at;) +{8P*(K, — K;) + 4wP*(K;— K,)} a1, a1,] ¥,
Ty = [J+2M+ (3D +J—M,) (1~ 3d35)] 4,
Typ = [—J+ (M, — M) (a3, —aty) + (§D—J)) (1 —3aly) ] ¥,
Ty = [—J — (M, —M,) (af, —aty) + (3D —J;) (1—3ad5)] ¥,
Ty = [J—2M+ (3D +J;+M,) (1—3a3s)] .

(6-21)

We find that 7] corresponds to ferromagnetic order; 7, to type 1 order (see figure 25);
T, to type 2 order (see figure 26); 73, 7, T, and 7; to type 3A order (see figure 27, which
corresponds to 7;); 7y and 7 to type 3B order (see figure 28, which corresponds to 73);
T}, and 7}, to type 4A order (see figure 29, which corresponds to 7},); and 77, to type 4B
order (see figure 30).

Ferromagnetic order. If §D —J,+M,+4P?K,, +2P*w?K, is negative, the preferred direc-
tion n will be along the Z axis, and if this expression is positive, n may be anywhere in the
XY plane.

Type 1 order. 1f §D —J,+M,—4P?K,,—2P*w?K,, is negative, n will be along the Z axis,
and if this expression is positive, n may be anywhere in the XY plane. The order is always
a proper one.

Type 2 order. If $D—3Jy— M, is negative, n is along the Z axis, and if it is positive, n
may be anywhere in the XY plane. In the latter case, the ordering need not be a proper
one, but the a and b sublattices must be antiferromagnetically ordered within themselves.

Type 3A order. One can easily find the values of a,,, a,,, and a,; which make the corre-
sponding 7; a maximum, but they are complicated expressions in the anisotropy para-
meters, and we shall not write them down explicitly. The order is a proper one.

Type 3B order. We shall consider 7;. If $D —J,— M, > 0, n will be along the (1,1, 0) or
(1, —1, 0) direction, depending upon whether 8P?(K, —K,) +4w?P?(K,—K,) is negative
or positive, respectively. If $D—J,— M, < 0, n will be along the Z axis or along an XY face
diagonal depending upon whether 6 |3D —J,— M, | is larger or smaller than

|8P*(K, —K,) +4w?P*(K;—K,) |,

respectively. The order is a proper one.
Type 4A order. We shall consider 7},. If £D+1J, > 0 and M, > M,, n will be along the
X axis. If $D+3J, > 0 and M, < M,, n is along the Y axis. If

iD+3J, <0 and [3J/2] > | M, —M,|,
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n is along the Z-axis, and finally, if
ID+1J,<0 and [3J,/2]| < |M,—M,),

n is along the X or the Y axis according to whether K, — K, is positive or negative, respec-
tively. This type order is not necessarily a proper one, but the a and b sublattices must be
antiferromagnetically ordered within themselves.

Type 4B order. If D+ J-+ M, < 0, n is along the Z axis, and if §D -+ J;4-M, > 0, n may
be anywhere in the XY plane. The order is again not necessarily a proper one, but the a
and b sublattices must be antiferromagnetically ordered within themselves.

z z

X X
Ficure 25. Type 1 order for the b.c.t. case. Ficure 26. Type 2 order for the b.c.t. case.

VA Z

X X s

Ficure 27. Type 3 A order for the b.c.t. casc. Ficure 28. Type 3B order for the b.c.t. case.

VA 7z

X P
Ficure 29. Type 4A order for the b.c.t. case. FIGURE 30. Type 4B order for the b.c.t. case.
67-2
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548 D. Ter HAAR AND M. E. LINES

In conclusion we may draw attention to the fact that type 3B and type 4A order are
unlikely to occur unless some of the exchange interactions are ferromagnetic rather than
antiferromagnetic.

7. THE RUTILE CRYSTAL STRUCTURE

A considerable amount of experimental work has been carried out upon antiferro-
magnetics with the rutile crystal structure. The magnetic atoms in that case are upon a
b.c.t. lattice, and the magnetic system should therefore behave not very differently from an
isolated b.c.t. magnetic lattice. Figure 31shows the rutilestructure and figure 32 thesixteen
sublattices which we shall again introduce. We shall now try to take into account possible
superexchange interactions and to discuss how the presence of anions will modify the
results obtained in the previous section.

Z
1a 3, fa
/W 22/ X xdat | " X 2/
a
® o< x'g” -gfa
b, b,
2hg X | i Rared
525= 9@ 7% ® 52
. sal /| X 8al | X L ./ v
S5al / xla“/ x._ 2/ |62
(,0 hd xS—}—’ o 5a
o> AT
b~ L )
lag— Y it old
M 7 S YA dog” < o7
= ~X e
® ® tag” xSig” e

ao -

Ficure 32. The sixteen sublattices
of the rutile lattice.

Ficure 31. The rutile crystal structure.
Circles represent the magnetic cations
and crosses the non-magnetic anions.

We shall again take into account only such exchange interactions which can be expressed
in the form (1-15). As before, our main task is to try to choose the most suitable set of axes
for each interaction, where we now must take into account the positions of the anions as
well as those of the magnetic cations.

We first of all consider a central atom upon the 8a sublattice (figure 32). For the first-
neighbour interactions the magnetic lattice singles out the Z axis, but the anions now allow
us to single out the (1,1,0) and (1, —1, 0) directions. We take thus our «’, ', and 2’ axes
along the (0,0, 1), (1,1,0) and (1, —1, 0) directions and associate three different exchange
parameters J), J,, and J; with these directions. We note that the presence of the anions has
forced us to introduce three instead of two exchange parameters. In X’ we get for the first-
neighbour interaction the expression

Vila — O-SBaS4a, (7‘1)
where we have used the molecular field approximation and have dropped the subscript
x, and where - 9 9 0

0 = 4J,af;5+2Jp(ay +a15)? +2J5(ay, —ay,)?. (7-2)
We shall also use again the notation

J :J"}"‘Ja, J :J']LJ,[}; J :J+Jy) ‘]oc_}_Jﬁ+Jy:O' (7.3)
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There is some evidence that our representation of the second-neighbour interactions for
the isolated magnetic lattice need not be changed very much. Keffer (1952) has shown that
these second-neighbour interactions are probably largely of the dipole type. We shall,
however, add to (6:2) a further anisotropy expression as follows

Vaa,4p = 2K, 882840+ 2K, $8284P - 2K, S3254P + 2L, S8 5P 4 21, S8254P + 2L, S82 825, (7-4)
where the x', y’, 2’ directions are the same as those used in (6-2), where the x”, ¥, z” direc-
tions, which are singled out by the anions, are the same as the %', y’, z’ directions for the
first-neighbour interactions, and where
L,+Ls+L,=0. (7-5)
In 2" we get in the molecular-field approximation
Vaa,ap = [2K, PX(ay; +ayy+wayg)* + Ko(ay, —ay5) + 2K, Q%(ay, +a,,—2a,5/w)*
+2L,af;+ L/i’(al 1 +a,)? +Ly(au —ay,)?] §828%P. (7-6)
If we examine the possible paths for superexchange in the rutile lattice, we see that it is
to be expected that the third-neighbour interactions will be small compared to the nearer-
neighbour exchanges ; we shall therefore neglect the anisotropic parts of the third-neighbour
interactions. The total interaction of the central 8a atom with its neighbours is now
V8a — §Ba[gSta 4 §(S72 4 86) - pl (S1P 4 §BP) |- i (54D - $5D)

ARSI -S) 4 (S -ST) S0, (7-7)
where ¢ is given by (7-2), 0 = 4M, and

pL= /’1+2Laa%3+Lﬂ(au+412)2+Ly(‘111_‘112>2a (7-8)
Py = pa+2L, a3 +Lﬂ(all Jr‘112)2+L~y(‘111“’12)2, (7-9)
ps = p3+2L,at5+Lg(ay, *012)2+Ly(011 +ay5)? (7-10)
Py = P4+2Laa%3+Lﬁ(au’“412)2+Ly(011+412>2a (7-11)

with p; given by (6-8) to (6-11). In (7-7) we have included the anisotropy part of the inter-
action of the central atom with the crystalline field. This energy E_ ¢ has essentially the
same symmetry as the first-neighbour exchange energy,

E ; = 2[DS%+4D"S%+ D"S2], £7-12)

where the &', y', z’ axes are the same for the first-neighbour interactions. In 2" we get in
the molecular-field approximation
Eoy = [D(3at3—1) +2Ea), a,5] (5°%)? (7-13)
where E=D-D", D+D'-+D"=0. (7-14)
The term involving $82 in (7-7) arises from (7-13) if we take the extra factor 2 mentioned in
the previous section into account and write
4 =2D(3a};—1)+4Ea, a,,. (7-15)
Before we can write down the secular determinant we must take into account that the
atoms on the a sublattices see a different molecular field from those upon the b sublattices.
For a 4b atom as a central atom we get, for instance, instead of (7-7)
P4b — §4b[5SBb | §(S2b 4 §3b) 4 p!(S4a 4 §52) - py(S12 - §82)
RS STE) (S-S 44 S, (7-16)
67-3
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550 D. Ter HAAR AND M. E. LINES
where now 0 = 4Jyals+2J5(ay; —ayy)? +2J5(ay +ay5)?, (7-17)
W =2D(3a};—1) —4Ea a,,. (7-18)

The secular determinant can now be determined and is given by figure 33. This deter-
minant has 8 linear factors, leaving an 8 x 8 determinant which we shall discuss later on
in this section. The eight linear factors are the following ones

(1) g+o-+p,
(2) ¢+a'+4,
(3) ¢-+20—0o+p

; , 7 (7-19)
(4) ¢ =+ 20—0a +ﬂ )
(5) $—20—a+u,
(6) ¢—20—a"+ 4,
where the first two factors each occur twice.
ptp 0 0 0 o 0 0 0 Py Py Py P Py Py Py P
o ¢+u 0 , 0 0 o O, 0 P4 Py P2 P3 P3 P2 P P4
0 0 ¢+p & 0 0 o 0 Py P2 PL Py Py P Py P
0 ) 5 d+u 0 0 0 o 2 Py Py P Py Py Py P
o 0 0 0 g+p 6 9 0 Py Py Py P Py Pi Py P
0 o 0o 0 o gp 0 0 Py Py PL P Py P Py P
0 0 o 0 8 0 ¢4 0 pg pr Py P Py P2 PL P
0 0 0 o 0 J o d+u P Pi P3P Py Py Py P
L Py Py Py Py Py Pi P p+p 0 0 0 o 0 0
Py PL o Py P 3 P2 PL Pl o ¢+u 0 ) 0 o 0
P3 Py Py Py Py Py P2 P3 0 0 ¢+p 0 0 0 o
Pr P3Py P P P Ps P2 0 J 6 d+pu 0 0 0
Py Py Py P P Py Py Py o 0 0 0 p+p 0 0
Ps 2 PL P Py P Py P 0 o 0 0 & d+p O
Py Py 2 Py Py Pp Py P 0 0 o 0 6 0 ¢+p
P 4 3 P2 P2 P3 Py P 0 0 0 g 0 J o ¢

+ o

Ficure 33. The determinant of the secular equation for the rutile case.

These factors correspond to the following transition temperatures
Ty =[-J=(f=J,+E) ana,+(ED+3],) (1=3ak)]y, ]
L= [—=J+ (=, +E) ayya,+ (5D +3J,) (1—3ady)] ¥,
Ty =[J—2M+(Jy—J,—E) aya,+ (3D —3J,) (1-3a1;)] ¥,
Ty = [J—2M—(Jy—J,—E) ey a1, + (D —3J,) (1 —3aty) ] ¥,
Ty = [J+2M+(Jp—J,—E) ayyary + (3D —3J;) (1 —3as) ] 4,
Ty = [J+2M—(Jy—J,—E) aya,,+ (3D —4J,) (1 —3afy)] . |
Here 7} and 7, correspond to type 4A order, 73 and 7, to type 4B order, and 7; and 7§
to type 2 order, where the types of order are the ones defined in the previous section. For
each of these types of order one possible direction of ordering is along the Z axis; the other
possible direction is either the (1, 1,0) or the (1, —1, 0) direction. Moreover, in the latter

case the directions of ordering of the a- and b-sublattice spins will be at right angles to one
another, that is, if the a spins are along the (1, 1, 0) direction, the b spins will be along the

(7-20)
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(1, —1, 0) direction, or the other way round. This effect did not occur in the b.c.t. case
(the angle between the a and b sublattices for the equivalent case was arbitrary) and
is produced by the inclusion of the anions. We shall call such an ordering rutile type diagonal
ordering.

Type 2 order. The a-sublattice spins have an exchange interaction energy due to their
surroundings which is proportional to

J+2M+ (3D —3J,) (1—3al,) + (‘]ﬂ_'J'y—E) a11919 (7-21)
and the corresponding expression for the b-sublattice spins is proportional to
J+2M+ (3D —3J,) (1—38al,;) — (Jy—J,— E) a;, 4y, (7-22)

IfD—J,<0and 3|D—J,| > |J;—J,—E| both (7-21) and (7-22) are maximum when
a3; = 1: both a and b spins will be directed along the Z axis.

If either D—J, >0, or D—J, <0 but 3|D—J,| < |J;—J,—E|, (721) is maximum
for a,, = a;, = 27, if Jy—J,—E> 0 and for a;; = —a;, =—27%, if Jy—J,—E < 0; the
a and b spins point to their anion neighbours, if J;—J, — E > 0, and at right angles to them,
if Jy—J,—E < 0; this means that we have rutile type diagonal ordering.

Type 4A order. We find by similar arguments, that if '

D+J,<0 and 3|D+J|> |Jy—J,+E,

both a and b spins will be directed along the Z axis. If D+J, > 0, or D+J, < 0 but
3|D+J,| < |Jy—J,+E| we have rutile type diagonal ordering; the spins will point to
their anion neighbours, if J,—J, + £ < 0.

Type 4B order. The situation is exactly the same as for the type 2 order.

We must now discuss the 8 x 8 determinant which is left after the factors (7-19) have been
removed. As this determinant can not be written as a product of linear terms we cannot, for
any general direction in space, find ferromagnetic or type 1, 3A, or 3B order where all
spins in the lattice are parallel or antiparallel as we did for the b.c.t. case. We notice, how-
ever, thatif ¢ = ¢’ and 4 = 4/, thatis, if either £ = 0 and J; = J,, or a;; = a,, = 0, we could
factorize the determinant in linear factors.

The 8 x 8 determinant can be factorized as a product of four 2 x 2 determinants, and the
remaining secular equation is of the form

4 R||B U||C V
R A4 ||U B ||V C
A=¢+u+o+2, A =d¢+u+o +20;
B=¢+ut+o—28, B =¢+u -+ —26; 7-25)
C=¢+u—o, C'=¢+p —0o'; 7-26)

(
(
(
R =2(p;+py+p3+ps); (7-27)
(
(
(

c w
IW Ol:m (7-23)

7-24)

U=2(py+ps—p3—p4); 7-28)
V=2(py—pytps—pa);
W = 2(—p;+py-+p3—ps).

7-29)
7-30)
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We note that if z = 4’ and ¢ = ¢’, the left-hand side of (7-23) reduces to the product of
the first 8 factors (6-20). We can thus expect the determinant involving 4 to lead to type 1
or ferromagnetic order approximately, the determinant involving B to type 3B order
approximately, and the determinants involving C to type 3A order approximately.

Type 1 order. The solution R = ,/(A4A") leads to a transition temperature

Ty = [4K —J —2M+ (3D —J,— AP?K,— 2P2w?K,, —2L,) (1 —3a%,) +2Ka, ayx?] ¥, (7-31)

where y = S htE , (7-32)
4K

and where we have assumed |y| to be small compared to unity so that we can expand the
square root in powers of y. This assumption is almost certainly justified for the rutile salts;
for the particular case of NiF, the antiferromagnetic ordering found experimentally
indicates, as we shall see in the next section, that y ~ .

Let us now assume that there is an angle 7 — 0 between the spins on the a sublattices and
those on the b sublattices, and that 6§ is a small angle. This entails that the system X’ is no
longer uniquely defined, but will be different for the a and the b sublattices. Let the a;
refer to the system 27, corresponding to the a sublattices and the b;; to the system X'}, corre-
sponding to the b sublattices. If a;; = b;;, # would vanish. Having found 77 we can then
solve the simultaneous linear equations for the $ and then find equations relating ¢ to the
a;; and b;;. The result is that § must satisty the following two equations

1—cost = "‘audlz%l (7:33)
1—cost = by, b,y |
If $D—J,—4P?K, —2P*w?K ,—2L, < 0, T; is a maximum if a;; = b;3 = 1. In that case
0 = 0, and the order is a proper type 1 order with n along the Z axis.
If $D—J,—4P°K,—2Pw?K,—2L, > 0, T; is a maximum if a;3 = b;3 = 0, and (7-33)
is solved by:

either ay =by; =0, or ap=0b,=0, 0=0;

_ 1 _ 1
or ay = —by ==y, ap =10, =1,

} 0] = [yl

(7-34)

_ — 1 _ —
or Qg = —byy=—3%x, ay = by =1,

The second alternative leads to a larger total energy and corresponds thus to stable order.
We must note, however, that we have obtained this result from the original assumption
that the exchange-interaction energies were of the form (7-7) and this would only be true
if the order were a proper one, which it is not. However, as long as 0 is small, equations such
as (7-7) are close to the correct ones, and the result obtained in this way for ¢ should be
a good approximation.

In this type of order we have the spins on the a and b sublattices all inclined at the same
small angle 36 to either the X or the Y axis. Itis a distorted type 1 order, and there are four
equivalent spin arrangements which are shown in figure 34, depending on whether y is
positive or negative and whether the spins are pointing approximately in the X or the

direction.
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We note that for this type of order for temperatures below T, there should be a small
resultant ferromagnetic moment along either the X or the Y axis; this moment should be
1 |x| times the saturation magnetic moment.

Ferromagnetic order. The solution R = —,/(AA") leads to

Ty =[—J—4K—2M+ (4D +4J,+4P2K,+2P?w?K ,+-2L,) (1 —3a3;) —2Ka}, a},x*] ¥,

(7-35)
where we have again expanded in powers of . The situation is similar to the one for type 1
order, and we find the following results.

If 3D +3J,+4P?K, +2P*w?K ,+2L, < 0, all spins will be alined along the Z axis.

If $D +3J,+4PK, +2Pw?K ,+ 2L, > 0, we get a distorted order, where the spins on
the a and the b sublattices will be inclined to one another at an angle # and to the X (or
Y) axis at an angle {6, where again 6 = |y|.

)d
@ )
h . e
% 0 ‘71 6
_— L—————~—-Q \l.:éf__.
X
© @
| |
A
/ \

Ficure 34. Four equivalent arrangements for a type 1 order of the rutile crystal spins in the XY
plane. Centre atoms are on a b sublattice, corner atoms on an a sublattice. The angle 8 is
given by the equation 0 = |x|. Figure 344 corresponds to a;; = 1, y negative; figure 345 to
a), = 1, x positive; figure 34¢ to a,, = 1, x negative; figure 344 to a,, = 1, y positive.

Type 3A order. The solutions V =4 ,/(CC"), W =4,/(CC’) lead to the transition
temperatures

Ty = [J+(3D—4J,) (1—3aly) + 4 J{4w P Ky — K )? a} afy 10ty a1, K ¥, (7°36)
Ty = J+(ED—1J,) (1—3aty) +-4 [{4w P Ky — K,)? atyaly +aty o, K%}y (737)

There are three possible configurations; which of these will be the stable one will depend
on the signs and magnitudes of the various anisotropy parameters. The three possibilities
are the following ones for 75: the first one is formed by putting 4,, = 0 and making
(4D —1J,) (1—8a3,) —8wP?*(K;—K,) a;,a,; a maximum; the second one is found by putting
aj, = 0 and making (3D—1J,) (1 —384%;) +8wP?(K;—K,) a,,a4,; a maximum; the third
one is the rutile type diagonal ordering in the XY plane. In the first two cases the order is
a proper one, but n is a complicated function of the anisotropy parameters.
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Type 3B order. The solutions U = +,/BB’ correspond to the transition temperatures

Ty = {—J+2M+ (3D +1J,) (1-3a)
201,015 J[AK 3+ (WP K, — Ky) —20°P (K= Ky) - 2(Ly— L)Y} g (739)

This type of order has not yet been found in nature. If D+J, < 0 both a and b sublattices
are alined along the Z axis. If D+J, > 0, ordering takes place in the XY plane. The a
sublattices and the b sublattices will each be properly antiferromagnetically ordered, but
if y # 0 they will not have the same preferred direction of alinement. In the limiting case
of negligible second-neighbour anisotropy, the ordering approaches the rutile type diagonal
ordering. In other cases the angle between the spins on the a and the b sublattices will be
a function of the anisotropy parameters which can be found in the usual way.

8. COMPARISON WITH EXPERIMENTAL DATA ON RUTILE STRUCTURE ANTIFERROMAGNETICS

A considerable amount of experimental work (Erickson 1952, 1953 ; Shulman 1961) has
been carried out on the following rutile structure antiferromagnetics: MnF,, FeF,, CoF,,
NiF,, and MnO,. Of these MnF,, FeF,, and CoF, show type 1 order with the Z axis as the
preferred direction, and MnO, shows type 2 order with the preferred directions along the
XY face diagonals with probably the a and b sublattices mutually perpendicular. All these
arrangements were found as possible types of order for rutile structure antiferromagnets.
We must mention here the work of Yoshimori (1959) who has found a screw-type ordering
for MnO,, with a pitch of several times ¢,. He claims that this order has been found experi-
mentally. We have found that this type of order is, indeed, the most stable one for certain
ranges of J and K; it is not included in our results as it necessarily involves magnetic unit
cells larger than the ones considered here.

The most interesting case to date is, perhaps, that of NiF,. This crystal appears to have
a type 1 order but with the preferred direction in the XY plane and a small residual ferro-
magnetic moment in the X or ¥ direction below the antiferromagnetic transition tem-
perature (Matarrese & Stout 1954; Shulman 1961). From these data one can calculate
x and the result is that y ~ 45 as mentioned in the previous section (giving 40 ~ 1-8°).

Moriya (1960) has also treated the NiF, problem theoretically. He arrives at essentially
the same spin arrangement as we have found. He neglects dipole- and pseudo-dipole
interactions, and although we have shown that this restriction is unnecessary to find the
NiF,-type ordering, it is probably true that for NiF, the main anisotropy effect is due to
the crystalline field.

Other antiferromagnetic salts, the spin arrangements of which have recently been deter-
mined, are CrCl, and CrF, (Cable, Wilkinson & Wollan 1960). Neither of these salts
have their magnetic atoms on a b.c.t. lattice, but both show the rutile anion positions.
The chlorine atoms in CrCl, are on an ortho-rhombic lattice. Since in this case the lattice
is very close to a b.c.t. one, we may with some justification apply our results to it. This salt
shows type 3 A order with rutile type diagonal ordering which is again one of the arrange-
ments found in the previous section.

Although CrF, is actually monoclinic it is only slightly distorted from proper rutile
structure. It shows type 1 order with the preferred direction definitely not along the Z axis,
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but otherwise undetermined. This would suggest an arrangement similar to that of NiF,
and a small residual ferromagnetic moment below its antiferromagnetic transition
temperature.

We should like to express our gratitude to Dr J. H. E. Griffiths, Dr J. Owen, and
Mr J. H. M. Thornley for helpful discussions and to the Department of Scientific and
Industrial Research for the award of a maintenance grant to one of us (M. E.L.) during
the tenure of which this research was carried out.
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